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Reference

* These notes partially follow the textbook Chadwick, Morfett and Borthwick Hydraulics in
Civil and Environmental Engineering, published by Spon Press.

* Page references are to the 4th edition, 2004, ISBN 0-415-30609-4, but both earlier and later
editions will also suffice.

* Purchase of this book is highly recommended.
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Introduction and layout of the lectures

We study the flow of a Newtonian fluid (i.e. water) within circular pipes of relevant length (pipeline),
i.e. several thousand of time the value of the pipe diameter.

Why?

Water service or in particular the hydraulics of water distribution systems is generally assumed to be
reliable and utility customers expect high-quality service. Therefore design and operation of water
systems require a deep understanding of the flow in complex systems and the associated energy
losses.

Pipelines are widely and typically used in several fields of engineering:
- Generally to convoy a fluid from supply to storage reservoirs;
- Aqueducts;
- Hydroélectrique plants, i.e. penstokes, etc. ;
- Oil-ducts;
- Etc.

We will learn the basic concepts that govern the hydraulics of pipelines in order to use this
knowledge in understanding the verification and design problems of water distribution systems.

Layout of the lectures 1 -5
- Lecture 1: Review of fluid mechanics and fundamental variables
- Lecture 2: Pipe flow hydraulics, pipelines and altimetry problems
- Lecture 3: Pipelines: verification problems
- Lecture 4: Systems involving pipelines: design problems

- Lecture 5: Pipe networks and

GLOSSARY

L, I = pipe length U= mean stream velocity u = dynamic viscosity
d = pipe diameter Q =flow rate Re = Reynolds number
k = pipe roughness p = water density f = friction factor

p = relative fluid pressure y = specific weight C = Chezy coefficient

z = geodetic height R= hydraulics radius [3=Darcy roughness

g = gravitational acceleration o, = Coriolis averaging coefficient
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Lecture 1. Review of Fluid Mechanics

1 Fundamental variables and total derivatives

Consider a control volume (Euler approach) and a Cartesian reference system x,y,z, the continuous
flow field of a Newtonian fluid (i.e. constant dynamic viscosity, u [M L™ T™]) is completely described
by 5 variables, that are the three scalar components of the velocity vector u = u(x,y, z, t)t +
v(x,y,z,t)] +w(x,v,z, t)E [LTY, the density, p = p(x,y,z,t) [M L] and the thermodynamic
pressure, p = p(x,y,z,t) [M L'T? ie. Pa=kg m™ 5] here intended to be relative to atmospheric
pressure. To resolve 5 variables we need 5 (partial differential) equations describing the state, the
continuity and the momentum balance in each point of the flow field. As such 5 equations are
written in differential form, we need to supply initial conditions and boundary conditions at the
contour of the control volume.

2 What is the meaning of “total derivative”?
If we calculate the total differential of any of the fluid variables above, i.e. the velocity component
along the x direction, u we have

=+ %y Py s P
u= x yy 9z 2 T

from which by dividing by dt we have

Z—?=ug—z+v3—;+wz—z+g—?,

being u the velocity with which the infinitesimal trajectory component dx is travelled by a particle in
the time dt, and so on. The time derivative (in blue) is called local derivative as it represents how
variables change locally. The other derivative multiplied time the velocity components (in red) are
called convective derivative and are all nonlinear. These nonlinearities are responsible for the
amazing complexity and patterns that fluid particles originate when flowing. In other words, such
nonlinearities are responsible for determining the evolution of flow instabilities into complex

patterns, transition phenomena, etc..

In a flow, acceleration /T(x, y,z,t) [LT?] in each point of the control volume is therefore defined as

a=% = dtl+dt]+ dtk_ 6t+uax+vay+waz'

3 What is steady flow?
This course is concerned with steady flow. This refers to flow that does not change with time, i.e. the
term % = 0 everywhere. This does not preclude the flow varying with distance, that is convective

acceleration can be nonzero. For example, if a river is wider over there than over here, the mean
flow speed over there will be slower than over here, because the flow rate [L’T™] must remain the
same because of continuity (i.e. conservation of mass). Same situation occurs for flow through pipe
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nozzles and convergent, divergent, curves, etc. But for the flow to be steady this situation must
carry on unchanged in time.

4 What is uniform flow?

Uniform flow is a specific flow field for which @ = 0 everywhere. This is the case of steady flow in
pipes with constant section, or in flume channels with constant width, slope and roughness. Notice,
that a null convective acceleration does not mean that spatial derivative of the velocity components
are zero, but that their product with the velocity components is. So, a convective acceleration can be
zero either because the velocity component is or because the spatial derivative is zero. A good
example is flow into pipes, where the axial velocity component is clearly function of the radial
position, but not of the axial one.

5 Which are the equations of motion describing fluid flow?

As aforesaid, for 5 variables (functions) we need 5 Partial Differential Equations (PDEs), which are:

* State Equation
This equation links density change rates to pressure change rates through the volumetric
compressibility coefficient, & [ML" T3
o _pap
dt edt’
Notice that for incompressible fluids € = oo, which means that density and thermodynamic
pressure becomes independent, i.e. density is now a known constant in the problem, and
pressure is the only variable, called mechanic pressure. In other words, for incompressible
fluids, the problem reduces to 4 variables and 4 equations (only).

* Continuity equation
In local form this equation is written as
” +pV-u=0,
or in extended form

o o aw) _
2+ u a+v +w +p(ax+ +az)_0.

Notlce that for steady flow, this equation becomes
d v 9
Eavawlap (42 =0,

dx  0dy 0z
and for |ncompre55|ble fluids (p = const)
— du Jdv , dw
V-u= Ix + 5 + 5 0,

and the flow is said to be solenoidal.
The continuity equation can be rewritten in a more useful form for currents forming a
deformable flow tube with longitudinal coordinate, s, and cross section A(s, t) [Lz]. In this

case, by introducing the flow rate, Q(s,t) [L T"] we obtain
9(pQ) |, 9(pA) _

ds + at 0.
Again, for incompressible fluids (p = const), it reduces to
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s "ot 0,

which is useful to describe the unsteady motion of blood into arteries, for instance, or water
into pipes under very high pressure changes (see water hammer problem in HE4). In steady

conditions, the equation before reduces to

d . . .
a—g = (0, i.e. the volumetric flow rate, Q is constant along s.

* Momentum equation
This equation is written in vectorial form and involves three scalar equations. The most
famous one describing the flow of Newtonian fluid in a field with gravity acceleration, g [L T
’] is the celebrated Navier-Stokes equation

au 1y, _Hyuzp

” +V(gz) +pr pV u=0.
Notice, that all nonlinearities of such an equation are contained in the total derivative of the
velocity vector. For ideal fluid with zero viscosity (or at high Reynolds number where the

viscosity term can be neglected compared to others), this equation reduces to the Euler
equation

du 1
;+ V(gz) +;Vp =0,

which after projection along a fluid trajectory, gives

19U(s) | @ (UA(s) 9z(s) , 19p(s) _
g ot +65( 2g)+ ds +y as

By introducing the further hypotheses of incompressible fluid and steady flow conditions,

the latter reduces to the Bernoulli Theorem, i.e.

o PG | V) _ g
3 (z(s) + , + 20 ) =0,i.e.
2
H=1z(s)+ @ + L6
Each of the terms in the above equation express an energy per unit weight of fluid, i.e. the

= const.

potential (sum of the geodetic and the pressure) and the kinetic ones, respectively. This
helps to represent each energy as a height, whence the reference to H as Total Head.
Extension to currents (or streams) can be done by averaging over the power conveyed by
the stream and equalizing it to that of an equivalent stream with constant velocity profile
equal to the stream mean velocity, Uy,, which gives

2
H=2z(s)+ PE) 4 o Ul
1 29

When the velocity profile is almost flat, e.g. as in turbulent flow conditions, then the

= const.

averaging Coriolis coefficient, a, can practically be considered unitary.
Last, it is interesting to rewrite the Navier-Stokes equation for a current of incompressible
real fluid, which is

10Um(s) @_i_ a Urzn(s)) _ _T_w'
g ot 14 2g YR
where R [L] is the hydraulic radius defined as in the next section 6, and 1,,[M L' T2 is the

+=(2(s) +

wall shear stress. Hence, the term on the right-hand side represents how friction forces
contribute to momentum changes.
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6 Hydraulic Radius

We have been largely discussing circular pipes so far, at least implicitly. These are easy to
size by diameter. However not all conduits are circular, and channels are obviously not
circular. We thus have a different and more general measure, the Hydraulic Radius R. This is
defined by:

R=2

P
Where A is the cross-sectional area of the flow and P is the wetted perimeter, i.e. the length
of the interface between solid boundary and flowing fluid (so for a channel this includes the
banks and the bed, but not the water-air interface at the surface).

It will be apparent that for a circular pipe flowing full:

wd?
—_A_a _ 4
R= P md 4
Whilst for a rectangular channel of depth h and breadth b:
R_A__hb
TP 2n+b’

7 What gives rise to friction in a flow?

It is readily apparent in practical situations that flow of a fluid gives rise to frictional
resistance.

For example, we need to impart power to pump flow along, even on the level, because of
friction.

We can conceptualize friction as arising from shear stress against pipe (or channel) walls, as
shown in the figure.

Figure 1

However, this gives rise to a conundrum: we have already remembered, in the previous
section, that there is a ‘no slip’ condition at the walls — the fluid is not moving, so friction can
be doing no work at the walls.

In fact the friction arises from resistance within the fluid as successive layers further away
from the wall slide slightly faster over the preceding layer, until the area of constant velocity
at the centre of the flow (or near the surface, if in a channel).
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The area where there is rapid change in velocity close to the wall is called the boundary
layer.

If we use the concept of a ‘wall shear stress’ we are doing so as a convenient, but essentially
incorrect, approximation to reality that works when we are interested in the mean velocity
and the flow in a pipe and not in the detail of the flow within it.

Fortunately this is generally the case in practical civil engineering applications.

In FM2, you obtained the Hagen-Poisouille law as an analytical solution of Navier-Stokes
equations linking the energy dissipation per unit length, j (or S¢) into a circular pipe of

diameter D, to flow characteristics and physical properties
. 32uu
=
This relation can be reworked by introducing the dissipation along a distance equal to the

pipe diameter, D, normalized to the kinetic term, i.e.
Dj _ 32pu d

E_ Va2 E,thatls
2g 2g
_ 64 _ 64
f=2m=r
uw

where Re is the celebrated Reynolds number for pipe flow and f is the friction factor.
Notice, that this relationship is dimensionless, so it describes friction losses for any pipe flow
of Newtonian fluids flowing in laminar motion conditions

8 What are the fundamentals of laminar and turbulent flow?

Laminar and turbulent flow
o Laminar flow moves in smooth layers — laminae. Viscous forces predominate and
small disturbances are damped out.
o Turbulent flow is where inertial forces (i.e. the motion) becomes more significant
and small disturbances are not damped out.
o Turbulent flow looks like random, 3D eddying motions superimposed on top of
laminar flow.
o The eddies range in size from the width of the flow domain (e.g. pipe diameter)
down to a size so small that it is damped out by viscosity.
Reynolds number
o This is the non-dimensional number, which expresses the ratio between inertial
forces and viscous forces. Large Reynolds number > more significant inertial forces >
more likely to be turbulent flow.
pud _ ud
u v
o Re <2000 in a pipe > laminar flow; Re > 4000 in a pipe > turbulent flow.
Different numerical limits for different flows.
Many other expressions of Re, eg grain Reynolds Number used in sediment
transport.

o Re=

Flow profiles

o Aflow profile is a plot of flow velocity against distance across a flow, e.g. across a
pipe diameter or the depth of a channel.
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o Inacircular pipe flowing full, the flow profile of laminar flow is parabolic in shape
with the maximum flow velocity in the pipe centre:

o Inturbulent flow the profile is ‘flatter’ — a logarithmic curve — with the velocity
variation much more significant near the pipe walls.

o Ineach case there is a ‘no slip’ condition, i.e. the fluid adjacent to the wall moves at
the same velocity as the wall, which for pipes in civil engineering is usually zero.

o The reason that the flow profile in turbulent flow is flatter is that the turbulent
eddies mix longitudinal momentum more effectively across the flow —an eddy of
slower moving fluid near the wall circulates into faster moving fluid away from the
wall, dragging the faster moving fluid back a bit, and tending to accelerate itself.

o Inlaminar flow, momentum is transferred across the fluid only by viscous shearing
between the laminae.

o The flow profiles sketched are for pipes, but the same change in curvature from
laminar to turbulent flow also occurs in other flow patterns such as open channels.

Figure 2

* Mean velocity
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o For almost all practical civil engineering purposes, we are interested in the mean
flow velocity, i.e. the integral of the local velocity with respect to the distance across
the pipe.

We call this 4 (occasionally u, U, or vand many other things.)

o The flow, discharge or flow discharge Q= ©A where A is the cross sectional area (see
also section 5).

o We sometimes use the term cumecs to mean m?/s.

Wall shear stress
o The wall shear stress can always be expressed as t,, = YRj

Civil engineering flows are turbulent

o Inall practical civil engineering applications that | can imagine, flows are turbulent. If
your calculations indicate laminar flows, you are almost certainly wrong.

o You cannot tell a flow is laminar or turbulent just by looking at it. A flow can look
superficially quite smooth but still be turbulent. Do not confuse turbulence with
eddying, a more specific pattern of recirculation that occurs when flows pass an
obstacle such as a step, or with rough, white water. Rough, white water will be
turbulent, but not all turbulent flows look like this: two different concepts.

o The fact that almost all flow are turbulent allows to easily assume a Coriolis

averaging coefficient, a,, equal to unity.

9 Why does turbulent flow give rise to more friction than laminar?

It will be apparent from the previous section that in laminar flow the boundary layer tends
to be wider, though the friction within it is still less as there are no turbulent eddies mixing
momentum across it.

In both laminar and turbulent flow, the very narrow part of the boundary layer very close to
the wall is always laminar — a laminar sub-layer. This is because so close to a solid boundary
layer, there is no space for turbulent eddies to exist — the wall supresses them.

10 Why does the pipe (or channel) roughness matter?

However, it is also apparent in practice that friction is greater in a ‘rough’ pipe such as one
made from concrete, than it is in a smoother pipe, such as one made from plastic or
(uncorroded) steel. Why? If the fluid against the wall is stationary why would this matter?
The answer is that the laminar sub-layer is so thin that undulations in a rough wall — which in
practice are very small — still protrude through the laminar sub-layer and interfere with the
boundary layer proper, causing increased resistance to the flow.
This was quantified by Nikuradse (1894-1979) who made pipes artificially rough and
conducted careful experiments (see diagram on Powerpoint or on p102 of Chadwick et al.)
We thus conclude that friction is affected by:

o The motion of the flow, defining the level of turbulence (and quantified by Reynolds

Number)
o The significance of the pipe wall roughness (relative to the diameter of the pipe).



Fluid Flow Fundamentals Handout CIVE09035 Water Engineering, Transport and
Date: 20 September 2017 Treatment (Civil)

¢ All methods of practically quantifying friction embody these principles, giving rise to various

formulae

Figure 3

11 How do we express friction losses in turbulent flow?
It is interesting to obtain the structure of the wall shear stress, 1, for a turbulent flow occurring
within rough pipes. We do this by means of dimensional analysis:

Tw = f(p: uu,d, ks)r

where ks, is the mean height of the wall roughness asperities. By choosing p, 4, d as
dimensionally independent variables, one obtains

Iw ks
P ¢ (Re, 1)

By introducing Ty = yRj, and the friction factor, f one proves that

f = WRe, D).
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12 How do we quantify friction losses in fluid flows (for practical engineering

purposes)?

This section is fully discussed in class and the relevant formulae are on the data sheet.

For pipe flow calculations in the UK we use the Darcy formula with friction factor f, which
we quantify from the Moody Diagram, Colebrook White equation or perhaps more helpfully
the Barr formula which is slightly simpler and nearly as accurate.

Alternatively, we can use the Hydraulics Research tables, which are a tabulation of the
Moody Diagram.

For channel flow calculations, and pipe flow calculations in the USA, we use the Manning
formula.

The other formulae discussed in class are for interest, information and historic reasons, but
are not recommended for practical use.

13 How do we think in terms of head and head loss?

Like all moving things, fluid flows have potential energy and kinetic energy.
Kinetic energy is related to their motion and is typically quantified as velocity head
(assuming a, = 1):

Which is related to velocity squared as you would expect for kinetic energy, but expressed in
units of length — head.

Potential energy in fluid relates to two things: height above a datum (hence potential to fall
down with gravity and so convert potential to kinetic energy), and pressure — potential to
expand or squirt out of a confining container.

Pressure head can be expressed as:

n o2
Y pPg

Where p is the fluid density, whilst head due to height is expressed as an elevation above a
datum, z.
In the case of an open channel or pipe flowing partially full, the height of the free surface is
related to potential energy, which is obvious if you imagine opening a sluice gate to drain a
lock — the depth gets lower as water is accelerated, exchanging its potential energy in the
form of depth for kinetic energy in the form of motion.
If flow does some work which dissipates energy, for example as heat or noise, then there is
clearly an energy loss which translates as a head loss. An example of head loss is due to
friction as discussed above, and in this case the head loss due to friction is generally
dissipated as heat.
Civil engineers tend to use head rather than pressure or energy for convenience. Historically
pressures, etc, were measured by length in a manometer or stand-pipe so head is natural
measurement — but it accounts for the same basic concept.

10
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We will however repeatedly end up measuring something by head and still calling it energy,
so beware of this.

14 How does this relate to Bernoulli’s Equation (Section 5)

The above discussion is readily related to Bernoulli’s equation, encountered in Second Year.
In terms of head, this is:
.aZ

—+ i + z = constant

29 pg
along an unbroken streamline.
In second year, a condition of applying Bernoulli was that friction losses were negligible —
which is reasonable in several practical circumstances. However we can add in a term for
head loss and write the following version of Bernoulli for flow along a streamline linking
points 1 and 2 where there is energy loss:

— 2 —2

U (41 Uz [4)

—t+ Stz =——+—+4z,+h

29 pg ' 29 pg P
Equation 1

hs=jl is the head loss due to friction between the two sections distant /.

This equation is in terms of head, but can still be viewed as energy, the first term on each
side being kinetic energy and the second and third different forms of potential energy.
Bernoulli can be derived directly from energy principles but the derivation presented in
Second Year was most likely arrived at by integrating an equation of motion along a
streamline.

Note that we will repeatedly encounter head loss as a positive number — so a head gain (for
example from a pump) would be a negative head loss! Beware of this also.

15 How does this relate to the Momentum Equation (2™ Year)

And finally, while on the subject of Second Year, we must remember the steady state
momentum equation which we will use several times this year.
Key here are two facts:
o Momentum is a vector, so we consider x and y (and maybe z) directions separately,
applying the equation separately for each direction; and
o We need a Control Volume defining with precision the section of flow in which we
are interested, and we apply momentum across the control volume.
You must always sketch the Control Volume to be certain of doing the correct calculation.
The momentum equation for steady state flow is then:

Fo+Fa+Fp = ) pQuiowe — Y pQuisy

Equation 2

11
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* The mean velocities ugy,: and u;, refer to velocities out of and into the control volume in the
particular direction under consideration, and the large 2 indicates that these are summed
over all inlet and outlet streams passing the control volume. Fy is the force on solid bodies in
the control volume (including any pipe walls etc), Fg is the gravitational force, if any,
together with other body forces that might apply such as, in certain circumstances, Coriolis
forces or forces due to rotation of the whole system, and F; is the force due to any pressure
difference across the Control Volume. All the F terms are the forces which apply in the
coordinate direction under consideration at the time.
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